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Evaluation of Trace Anomalies in 6 Space-Time
Dimensions by Mathematica

Koichi SEO

Abstract
Trace anomalies for a scalar and a Dirac field theoris in 6 space-time dimensions are evaluated by making
use of our result for the third heat kernel coefficient presented in the previous paper. Among 17 possible
terms, 7 terms are eliminated by adding local counter terms to the original action. The results for a scalar

thoery are compared with the results by other people.
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I Introduction

In the prvious paper!, we present a evalua-
tion method of the third heat kernel coefficient in
a Dirac field theory. The trace anomaly of the
energy-momentum tensor in 6 space-time dimensions
is derivable from the coefficient as follows:

V=9g"" <Tyu(z) >

= —i lim tr[eiéy(lml(x,:E’)6(")(x,x')} , (L1
with
y(/% = p? = ¢ D, D, +¢R, (1.2)

where £ = %. If we retain & as a free parameter, the
trace anomaly for the scalar theory,

V=g99"" <Tu(x)>

= i lim tr[eiGY(O)(g(") (z,2")], (1.3)
with
YO =gV, V, +ER=0+¢R, (1.4)

is known by neglecting the derivative terms of I and
setting the parameter £ as (n — 2)/[4(n — 1)].

The third heat kernel coefficient was evaluated by
Gilkey? at first. There are some discrepancy be-
tween our result and Gilkey’s one. As for the coeffi-
cients dg and dj; in our notation of Ref.1, some miss
typings of our Mathematica program were found, and
the discrepancy vanished®) . As for the coefficients
c13 and cy4, our result is consistent with the results
by Avramidi® and Barvinsky et. al.®) They are giv-
ing only the integrated expression instead of the local
one, and there exists some ambiguity on the value of
the coefficients. In spite of their claim that their re-
sults are consistent with Gilkey’s one, their results
are rather consitent with our’s.

The trace anomaly in 4 space-time dimensions,
there exist 4 possible terms. Among them the term
proportional to OR can be eliminated by adding a

local counter term. In 6 space-time dimensions, there
exist 17 possible terms. First we must know whether
these terms can be eliminated by couter terms or not.
The contributuion to the trace anomaly of the possi-
ble local counter terms are evaluated with the help of
Mathematica.

Next we select terms to be left and determine
their coefficients. Finally we compare our results for
a scalar theory with those by other people %78

II Elimination of spurious anomalies
by local counter terms

Under the local Weyl transformation dgh¥ =
2ag"” | the curvature tensor and its covariant deriva-
tive transform as follows:

/ 4"z F*P7 5 Ry pe

/ d"r « {—ZRW,M + 9up VeV — 9., VeV,

*g,uavpvv + guovpv,u}FHVpa ) (21)

/ 4"z F"™P7 §(V, Rypor)

_ / "z a {{QRW)M B9 VA v VA v

+0-VoVy = Gpr VoV, } V, FHVPT

=4V, (Rypor FHP7T) = Vo (Rpupor FHPT)
Vo (Rupor FHP7T) = No (Ryppr FH7P7T)

Vi (Rupopu F"777) + gV (Repor F*P7T)
910V (Bueor F*P77) + guo V (Ryper F*P7T)

Jrgmve(RWM,EF’“""”)} , (2.2)
where F'’s are arbitrary tensors. These formulas are
coded by Mathematica as shown in Appendix A, and
the contributions of local counter terms to the trace
anomaly are obtained in the following. For simplicity,
we use the following notation,

/ ey gL,

nz

AL =

(2.3)

9
V=g~ agh
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L;
1 (symbol) Ci1 Ci2 ci3 Cid Ci5 Ci6 Ciz
RS
1 ) 0 6(1 —n) 0 0 0 0 0
sc
RR?
9 v 0 —(1+2) 2-—n 2(1—n) 0 0 0
(sc*rsq)
2
3 B Rypo 0 ) —4 0 2(1 —n) 0 0
(sc*esq)
R*, R¥ , R n n
! rew) " S ke O 1 B
Qv po
5 R#p Rl/a' R O % % n 0 1 —n n — 2
(crsq)
o vpoT
6 | v R(”””)R 0 0 -1 -2 —nd2 0 -n
resq
Ru/ o R#VT RPUTA
7 nvp A 0 0 0 0 3 0 12
(ccul)
R, pvo RM.Y Rp‘rn)\
o | B 55 o | o T T
(ccu2)
V,.R)?
9 (Vi F) 2(n — 1) 2 0 0 0 0 0
(dscsq)
2
10 (ViRup) n 0 3_n n—4 0 2(1-n) | 2(n—2)
(drsq2)
2
11 (VieRopar) 2 0 —4 4 —4 -8 16
(desq)

Table 1: The coefficients ¢’s in Eq.(2.14) which describe the contributions of the local counter terms to the

trace anomaly.

where £ is an arbitrary scalar density. In 4 space-
time dimensions, there exist 3 possible counter terms
and their conformal variations take the following ex-
pressions:

AR2:2(1—n)DR+(2—g)R2, (2.4)
A(Rap)? = =5 PR+ (2= 5)(Rap)”, (2:5)
A(Rapys)? = —20R + (2 — g)(RaM)Z‘. (2.6)

Therefore the trace anomaly term with the tensor
structure OR can be eliminated by the local counter
term proportional to R?. In 6 space-time dimen-
sions, there are 11 possible local counter terms and
their conformal variations can eliminate the following
7 tensor structures,

T, =0O°R, (2.7)

Ty, = V¥(RV,R) = ROR + (V,R)?, (2.8)
1

T3 = V,(R""V,R) = R""V,V, R + 5(V#R)2 ., (2.9)

Ty = V*(R""V,R,,) = R*"OR,, + (V,R,,)? ,(2.10)

T5 =

17

VH(RVpUTV/J,RVpUT)
= R'"""0OR,p0 + (VMRVPUT)2 )

= VARV, R,,)
= (V*R"’)V, Ry, + R""V"V,R,,

(2.11)

1
(VHR)V, R,y + 5 RV, VR — RV R R,
—R,R,e RV

= Vu(BY7V, Ryo)
= VRV, Rpo + R,V R e

(2.12)

1
(VMRVP)2 — (VER"P)V, Ry, + ERWPUDRWPU

1 1
+§RHVRM)UO'T RPOT + 1 Rywpo B 25 RroTA

+Ryuppo RV ARPTON.

(2.13)



Evaluation of Trace Anomalies in 6 Space-Time Dimensions by Mathematica

The contributions of 11 local counter terms to the
trace anomaly are summarized as

7
n .
AL; = ZcijTj +(B-HLi(i=1,2,11) (214)
Jj=1
The coeflicients c;;’s are shown in Table 1. Among
11 terms, 7 terms are sufficient to eliminate spurious

o1

anomaly terms. For example, ¢ =1,2,3,4,7,8,9.

I11

Results and discussions

In the previous section, it is understood that 7
terms can be eliminated by addition of local counter

terms.

define the 10 coefficients as follows:

<TH,(z)>

1
647T3 {Cl (VNR)Q +c2 (VNRVPO'T)2 +c3 R3

+c&RR., +c RR,,, +csR*) R, R,
+cr Ryp Ryo R*P7 + cs R, Rypor BT
+Co Rywpo R* rx R

A
+c10 Rp,puo R#TV)\ R } .

Now we select 10 terms to be left, and we

(3.1)

If we denote the coefficients before addition of local
counter terms as

< T“#(LU) >bare

1
@{al (VuR)? + a2 (VuRypor)? + a3 R?
+asRR., +asRR.,,, +agR", R', R",

v po
+a7 Rup Rye R*?7 + ag R*, Ryper RVP7T
+ag Ryupe R o5 RPTT

‘a0 Rupve R 772 RrPTN

+b1 O* R+ by ROR + b3 R*'V,V,R

+by R™ O Ry + bs R**7 0 Ryupo

+b6 (V. Ryp)? + b7 (VFRP)V, Ry, }

(3.2)

then c¢’s are related with a’s and b’s as follows:

C1

C2

C;

C6

c7

C8

C9

1 1
Zal—b2—§b3+i(—b4+b6+b7>7

= a5 by + 7(~ba+bo),
=a;, (i=3,4,5)
=ag — by + bg + b7,
= a7 — by +bg + b7,

1
:a8+§(b4_b6)7

1
— g+ ~(bs—b
a9+4(4 6)

c1o = aig +bs — bg .

(3.3)

i tensor c’s value (x(—8)%)
scalar Dirac
(symbol)
(r=0,¢=1) | (r=1.¢=%)
1 (VuR)? s sth
(dscsq) _M;W ﬁ
2 (VuRUPUT)2 ﬁ B %
(desq) 60 o8
3 R? o5 — % T % - %
(sc*) ~ o0 | 139
4 RR?, — 1085 + 180
(sc*rsq) ﬁ *ﬁ
5 REZ,,, 1050~ T80 ~ 55 T b6
(sc*esq) *ﬁ 7T760
6 | meor, R, — 5%
(reu) ~ 5% 507
T | Ry Ruw mEVP0 7560
(crsq) ﬁ —ﬁ
8 R, Ryupor RVP°7 —ﬁ + ﬁ
(resq) _ﬁ - 5}10
9 | Ruvpo R*ox RO - 9067120 + 576
(ccul) - 9067120 — 2;230
10 | Ry 75,73 77 ~ 90 + 3
(ccu2) — 680 — 567

Table 2: The coefficients ¢’s in Eq.(3.1) which de-
scribe the minimal trace anomaly. f is a parameter
to discriminate the scalar case and the Dirac case,
and taking the value 0 and 1, respectively. The fac-
tor (—8) for the Dirac case comes from the trace of
the Dirac matrix and the fermion loop.

The formulas for the trace of the Dirac matrix are
listed in Appendix B. Our results for the coefficients
¢’s are shown in Table 2.

Bastianelli and Dass® have presented a simple
method to evaluate the trace anomaly for a scalar
theory. Their calculation is based on the paper by
Bastianelli, Cuoghi and Nocetti”) , where the consis-
tency condition for the trace anomaly is argued and it
is concluded that only 4 coefficients are independent:

1
= 73(CLE6 +c1l1 + eols + 0313), (3.11)
647
where FEjg is the topological Euler density, and I'’s are
three independent Weyl invariants. In Ref.6, the co-
efficients have been determined by reducing the prob-

<TH, >
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lem to a quantum mechanical one. On the other
hand, Ichinose and Tkeda ® have presented an al-
gorithm to obtain the trace anomaly in higher di-
mensions, and have carried out the program in a 6
dimensional scalar thoery.

In order to comapare these results with our’s, we
rewrite Eg and 3 Weyl invariants by 17 terms in
Eq.(3.2). In fact, 3 terms are absent, O%R, (V, R)?,
and R*'V,V,R. We determine 3 coefficients of
the contributions of local counter terms to the trace
anomaly, 64% Z:Zl «;T; , to eliminate these 3 terms.
Other 4 coefficients o;(i = 3,4,5,7) are kept as free
parameters. Our results for a scalar theory are shown
in Table 3, and are compared with those by Bas-
tianelli and Dass® , and with those by Ichinose and
Ikeda® . Even if we take special values for the pa-
rameters o’s, these results cannot be consistent with
each other.

Hatzinikitas and Portugal® have also given the
integrated trace anomaly, by carring out a super-
symmetric quantum mechanical computation. They,

however, set £ = %, and their results cannot be di-
rectly compared with those by other people (§ = %)

Appendix A. Variation of counter terms
under the Weyl transformation

SetAttributes[P,Flat];
SetAttributes[g,0rderless];

(* conformal transformation, s is a fixed
index. *)

var[P[x__1]:= Sum[Apply[P,

Join[{var [{x}[[j1]1}, Deletel{x},jl]1],
{j,1,Length[{x}]1}];

(* variation of the square root of the
metric tensor

var[e]= -N*P[e];

(* variation of the metric tensor with upper
indices *)

var[glm_,n_]1]:= 2+P[g[m,n]];

(x variation of the curvature tensor x*)

var[r[m_,n_,o_,p_1]:= -2%P[r[m,n,o0,p]] +
Plglm,o0],d[pl,d[n]] - Plglm,p],dlo],d[n]] -
Plgln,o],d[pl,d[m]l] + Pl[gln,pl,dlo],d[m]];

(x variation of the derivative of the
curvature tensor *)

var[r[m_,n_,o_,p_,q_1]:=
2+P[r[n,o0,p,ql,d[m]] - Plgln,pl,dlq],
d[o],d[m]] + Plgln,ql,dlpl,d[o],d[m]] +
Plglo,pl,dlql,d[n],d[m]] - Plglo,ql,dlp],

0 d[n],d[m]] - 4*P[d[m],r[n,0,p,ql] -
Pld[n],r[m,0,p,q]] - Pld[lo],r[n,m,p,ql] -
Pldlpl,r[n,o,m,q]] - P[dlq]l,r[n,0,p,m]] +
P[g[m,n],d[s],r[s,0,p,q]] + Plglm,o0],d[s],
r[n,s,p,ql] + P[glm,p],d[(s],r[n,o0,s,ql] +
Plg[m,q],d[s],r[n,0,p,s]];

tensor our
B.D.| 1L
(symbol) results
ROR 1 _ay | 1 |1
(sc*ddsc) 25200 2 1200 18900
R*Y OR,, 1 +a 1 11
(rddr1) 630 4 420 | 1890
REPTORwpe ] 1 e 1| 1L
(cddc) 420 5 4| 420 1890
(vuRvp)2 1 1
(dI‘SQZ) 2520 + Qy + Qar 840 0
(VHRYP)Vy Ryp 1 1
(drsq3) 500 — 203~ 7| ~q3p 0
(ViRupor)? ST 1 0
(desq) 560 840
3
R 1 N 47
(Scs) 16200 16200| 283500
2
RR,, 1 1 17
(sc*rsq) 5400 5400 | 18900
2
RRuvpe 1 1|1
(sc*csq) 5400 5400 |~ 2700
Ry RYp Ry __2 194 11 1
(rcu) 14175 3 | 11340 | 5670
Ryp Rug RMVP7 1 +2a 1 | 1
(crsq) 1725 3 756 | 315
By Rypar REO7T 1o |7 |1
(resq) 945 2 7560 | 126
v oTA
Ryuvpo R*Y 75 RP B S YY) 71| 1
(ccul) 11340 4 45360 | 11340
v TOA
R’J’PVUR“T )\RP 7L+O( L 7i
(ccu2) 567 7 11340 567

Table 3: Comparison of the coefficients of the trace
anomaly for a scalar theory. B.D. and I.I. are the
results of Ref.6 and Ref.8, respectively.

(* distribution rule and multiplication of
constant *)
Plx___,yl_+y2_,z___]:

= P[x,y1,z] + P[x,y2,z];
Plx___,c_#Ply__1l,z___]:=

cxP[x,y,z];

counter=1

(* R"2 %)

f[1,counter]= var([P[e,glm,n],glo,p],
r[m,o,p,nl,gla,bl,glc,d]l,rla,c,d,b]]];
(¢ (R_{\mu\mu}) "2 *)

f[2,counter]= var[P[e,g[ml,m2],g[n1,n2],
glol,p1]l,glo2,p2],r[m1,01,pl,nl],
r[m2,02,p2,n2]1];

(x (R_{\mu\nu\rho\sigmal}) "2 *)

f[3,counter]= var[P[e,g[ml,m2],g[n1,n2],
glol,02],glpl,p2],r[m1,nl,01,p1],
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r[m2,n2,02,p2]1];

(* R™3 %)

f[4,counter]= var[P[e,g[ml,n1],glol,pl],
r[ml,01,p1,n1],gm2,n2],gl02,p2],
r[m2,02,p2,n2],g[m3,n3],g[03,p3],
r[m3,03,p3,n3]11];

(* R(R_{\mu\mul}) "2 *)

f[5,counter]= var[P[e,g[ml,m2],g[nl,n2],
glol,p1],glo2,p2],g[m3,n3],gl03,p3],
r[mi,ol,pl,n1],r[m2,02,p2,n2],
r[m3,03,p3,n3]11];

(* RGR_{\mu\nu\rho\sigmal})"2 *)

f[6,counter]= var[Ple,g[ml,m2],g[nl,n2],
glol,02],glpl,p2],g[m3,n3],gl03,p3],
r[mi,ol,pl,n1],r[m2,02,p2,n2],
r[m3,03,p3,n3]11];

(* R_{\mu\nul}R_{\nu\rho}R_{\rho\mu} *)

f[7,counter]= var[P[e,g[ml,n3],glnl,m2],
gn2,m3],glol,p1],glo2,p2],gl03,p3],
r[mi,ol,pl,n1],r[m2,02,p2,n2],
r[m3,03,p3,n3]1]1];

(* R_{\mu\nu}R_{\rho\sigma}
R_{\mu\rho\nu\sigma} *)

f[8,counter]= var[P[e,g[ml,m3],g[nl,p3],
gm2,03],g[n2,n3],glol,p1],glo2,p2],
r[mi,ol,pl,n1],r[m2,02,p2,n2],
r[m3,03,p3,n3]1]1];

(* R_{\mu\nu}R_{\mu\alpha\beta\gamma}
R_{\nu\alpha\beta\gammal} *)
f[9,counter]= var[P[e,g[ml,m2],g[n1,m3],
glo1,p1],g[n2,n3],gl02,03],glp2,p3],
r[ml,ol,pl,n1],r[m2,02,p2,n2],
r[m3,03,p3,n3]1];

(* R_{\mu\nu\rho\sigma}R_{\mu\nu\alpha\beta}
R_{\rho\sigma\alpha\beta} *)
f£[10,counter]= var[P[e,g[ml,m2],glol,02],
glp1,m3],gln1,03],g[n2,n3],glp2,p3],
r[ml,ol,pl,n1],r[m2,02,p2,n2],
r[m3,03,p3,n3]11];

(* R_{\mu\rho\nu\sigma}R_{\mu\alpha\nu\beta}
R_{\rho\alpha\sigma\beta} *)
f[11,counter]= var[P[e,g[ml,m2],glol,m3],
glpl,p2],gln1,p3],g[n2,n3],gl02,03],
r[ml,ol,pl,n1],r[m2,02,p2,n2],
r[m3,03,p3,n3]11];

(* (\nabla_\mu R)"2 *)

f[12,counter]= var[P[e,gl[x,y],glm,nl,glo,p]l,
r[x,m,o,p,nl,gla,b]l,glc,d]l,rly,a,c,d,bl]l];
(* (\nabla_\mu R_{\nu\rhol})~2 *)
f[13,counter]= var[Ple,gl[x1,x2],glyl,y2],
glz1,z2],g[m,n] ,glo,p] ,r[x1,m,y1,z1,n],
r[x2,0,y2,22,pl1];

(* (\nabla_\mu R_{\nu\rho\sigma\taul}) 2 *)
f[14,counter]= var[P[e,g[x1,x2],glyl,y2],
glz1,22] ,glwl,w2],glvl,v2],
rlx1l,yl,z1,wl,vl],r[x2,y2,2z2,w2,v2]1];

ji=14

Do[f[j,counter+1]=Expand[f[j,counter]],
{j,1,j1}]

counter=counter+1

(* e and g are covariantly constant. *)
Plx___,d[m_],e,y___]:= P[x,e,d[m],y];
Plx___,d[m_1,gly__1,z___1:= Plx,glyl,d[m],z];
(* application of the Leipnitz rule *)
Plx___,dm_],rly__],z___]1:=

Plx,r[m,y],z] + Plx,r[y]l,d[m],z];

(* the end of the derivative *)

Do[f[j,counter+1]=f[j,counterl]//.
Plx___,d[m_]11->0,{j,1,j1}]

counter=counter+1

(* After derivation, the order of the
factors are irrelevant. *)
Do[f[j,counter+1]=

f[j,counter]/. P->Times,{j,1,j1}]
counter=counter+1

(* contraction of the metric tensor and
the curvature tensor *)
Do[f[j,counter+1]=f[j,counter]//.
{glm_,n_J*r({x___,n_,y___]->r[x,m,y],
glm_,n_]1"2->N}, {j,1,j1}]
counter=counter+1

rix__,m_,m_]:=
rlx__,m_,m_,y_,
rim_,m_,x_,y_]:

>

_1:= 0;
0;

——

I N O

(* contraction of the curvature tensor *)
r(m_,n_,n_,m_]:= sc;

r(m_,n_,m_,n_]:= -sc;

rm_,x_,y_,m_]:= Applyl[ri,Sort[{x,y}]];
rix_,m_,m_,y_l:= Applylri,Sort[{x,y}1];
rim_,x_,m_,y_]:= -Applyl[ri,Sort[{x,y}1];
rlx_,m_,y_,m_]:= -Applyl[ri,Sort[{x,y}1];
rilm_,m_]:= sc;

(x £(5) *)

rlx_,m_,n_,m_,n_J:= -sc[x];

(* Below the same program as Appendix C
of Ref.1 follows. *)

(* final results for general dimensions,
e is set to 1. *)

Do[ds[j]l=Expand[f[j,counter]/2],{j,1,j1}]
(* 4 dim %)

Dol[ds4[jl=ds[jl1//. N->4,{j,1,3}]

(* 6 dim *)

Dolds6[jl=ds[jl1//. N->6,{j,4,j1}]

SetDirectory["d:\\trace_anomaly2"]
Save["var_r.txt",ds,ds4,ds6]
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Appendix B. Trace of Dirac matrices

trl = 2% (B.1)
tr{yy’] =259 (B-2)
trlo®ol] =282

[adnb]c (B3)
[

ab __cd _e n_: ac e a e c 9
tr{o%iot! | = 283 (plocyplieyd] _plodyileyen) (p.4) )

tr[(Ruw)?] = =25 7 (Ryupo)? (B.5)
RMtr[R,,R,?] = 25 3 R" R0, R,*?"  (B.6)
R™P7tr[ Ry Ry | = =22 3 RM™PT R0 RS (B.T)
tr[R*, R” ,R )] = 25 3R*" R,,5R,%," (B.8)
tr[(DuR,)?] = =28 73 (V,R77)? (B.9)
tr[(D"R,,)?] = 2% 3 (VI RIP7)?

=-22"2{(V,R,,)*> — V*R,,V'R,"} (B.10)

tr[R" D?R,,| = —22 3RMP°0OR,, (B.11)
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